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Abstract
The grid dependence of LES of a piloted methane-air (Sandia D) flame is studied on a series of grids with progressively
increased resolution reaching about 10 million cells. Chemical compositions, density and temperature fields are modeled
based on the evolution of mixture fraction combined with a steady flamelet model. However, to minimize interpolation
uncertainties that are routinely introduced by a standard flamelet look-up table procedure, we adopt a simple smooth an-
alytical relationship for specific volume and temperature as functions of mixture fraction. Such an analytical relationship
can be easily inferred by approximating a steady flamelet solution by quadratic functions that are known to give a quite
accurate representations of the lean mixtures. The simulation results are discussed and compared with available experi-
mental data. In particular, the dependence of LES turbulentstatistics on the turbulence resolution length scale is analyzed
and tested for the existence of intermediate inertial rangeasymptotic behavior. For the most part, the statistics converge for
the finest grids, but the RMS of the mixture fraction early in the flame shows some residual grid dependence.

Introduction
Large Eddy Simulation (LES) has proved to be an effec-

tive simulation approach for a wide range of turbulent flows
including chemically reactive turbulent flows [1, 2, 3, 4].
This latter class of flows adds an extra set of challenges
to LES modeling. In addition to accounting for the effects
of the unresolved dynamic scales, the small-scale molecu-
lar mixing and chemical reaction processes, which usually
occur on scales much smaller than LES grid, have to be
modeled as well. Nevertheless, the number of successful
applications of LES accompanied by rather sophisticated
combustion models [5, 6, 7, 8, 9], as well as by models with
simplified chemistry treatment, [10, 11, 12, 13] has been
growing, and these simulations have demonstrated the at-
tractiveness of the approach not only for canonical geome-
tries like laboratory jet flames but also for complex ones
like gas-turbine combustors [14, 15, 16].

In this work we focus on one of the canonical flame con-
figuration from the TNF flame series – Sandia flame D.
This piloted non-premixed methane-air flame has been ex-
tensively studied experimentally by Barlow & Frank [17]
and by Schneider et al. [18], and, as a result, it represents an
ideal benchmark case for testing and developing combus-
tion models in the context of LES. A number of LES studies
of Sandia flame D have been performed successfully in the
past [11, 19, 20, 13, 21] with combustion models of vary-
ing complexity. Most combustion models center on a mix-
ture fraction based flamelet approach [22], where chemi-
cal composition, temperature and density are parametrized
by one (or a few) field variables such as the mixture frac-
tion ξ(x, t) and its scalar dissipation rate, or a specially con-
structed progress variable [23]. Such a parametrization pro-
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duces a flamelet table which represents a discrete approxi-
mation of a smooth surface (manifold) in the space of ther-
mochemical variables so that all chemical species, temper-
ature and density can be retrieved from the flamelet table
if values of the parametrized variables are provided. The
predictive accuracy, thus, is based on two things: (i) the
parametrizing variables, i.e., the mixture fraction (and oth-
ers variables) should be accurately predicted from integra-
tion of their LES evolution equations; and (ii), the flamelet
parametrization should adequately approximate the chem-
ical reaction manifold. While such a simplified turbu-
lence/chemistry interaction treatment might fall short in
representing realistic combustion chemistry, as opposed to
more advanced and technically elaborated approaches such
as transported PDF based methods [24, 20], it provides
a useful tool to study particular effects of sub-filter scale
or/and combustion models on the LES solution.

Here, we follow a similar simplified approach by rep-
resenting the chemistry by a single mildly-strained steady
flamelet solution based on integration of a one-dimensional
counter-flow diffusion flame with the detailed GRI-Mech
3.0 chemical mechanism. A flamelet solution is obtained
from the OPPDIF module of the CHEMKIN commercial
software. Instead of forming a flamelet table, we approxi-
mate the flamelet solution for specific volume and temper-
ature by quadratic functions of the mixture fraction, i.e.,
ρ−1(ξ) = a + bξ + cξ2 andT (ξ) = aT + bTξ + cTξ

2. These
approximations are smooth, and hence eliminate flamelet
table interpolation uncertainties, and provide an accurate
fit to the flamelet solution for lean mixtures, while slightly
underpredicting density and overpredicting temperature for
rich mixtures correspondingly. Mixture transport proper-
ties, such as molecular viscosity and diffusivity, are also
obtained from the flamelet solution and are fitted to a power
law form in temperature, before being used in the LES
equations.



LES focuses on the explicit simulation of the large (re-
solved) scales of the turbulent motion where the effect of
unresolved scales is represented by a model. The resolved
LES fielduL(x, t) is very often associated with spatial filter-
ing of the underlying turbulent field, resulting in the filtered
field u(x, t). While such a definition of the resolved fields
can be somewhat helpful in derivation of the LES equa-
tions, albeit under very restrictive conditions of the uni-
formity of filter width and commutativity between filtering
and differentiation, generally it appears to be misleading as
discussed, for example, in [25]. The resolved LES field is
defined as the solution of the LES equations. We further
note that invoking the concept of filtering in deriving LES
equations is at least debatable since these equations arise
naturally in multiscale formulations [26], or in regulariza-
tion of the Navier-Stokes equations [27] without making
use of filters. The LES solution depends on the filter width
∆(x), or more appropriately, on the turbulence resolution
length scale [25], as it explicitly enters models for the SGS
stress.

Following [25], let Qm andQ denote statistics of inter-
est that are derived from an LES solution and from the
full turbulent field, respectively. For example, these can be
mean values of the resolved and full mixture fractions, i.e.,
Qm = 〈ξL(x, t)〉 andQ = 〈ξ(x, t)〉. In practice, the predictive
capabilities of LES are judged based on comparison of LES
statisticsQm to the “true” statisticsQ obtained from the
high-resolution experiments or, for low Re-number flows,
from DNS. However, as was discussed by Pope [25], a
comparison based on a single LES realization cannot be
deemed satisfactory, since LES statistics depend on the tur-
bulence resolution scale∆(x). Therefore, to evaluate the
fidelity of LES predictions it is necessary to consider the
dependence of LES statistics on∆(x), i.e., Qm(∆(x)). Fur-
thermore, based on such dependence, several criteria on
how to compare different LES models with respect to accu-
racy and cost can be formulated [25]. These criteria use a
notion of the intermediate statistic asymptoteQm

I that rep-
resents values of LES statistics which are, in a certain reso-
lution range, independent of∆(x). A study of the sensitiv-
ity of LES statistics to∆(x) gains more relevance for LES
of combustion systems. In turbulent combustion, the rate
controlling processes such as reactant mixing and chemi-
cal reactions occur on the small scales which are usually
much smaller than∆(x). As a result, the resolved effect of
the complex small-scale turbulence/chemistry interactions
is modeled in an affordable way by a combustion model. A
question of how a particular combustion model affects LES
statistics with respect to the true statisticsQ can be studied
based onQm(∆(x)).

In this work we apply a simple combustion model to
study the effects of∆(x), i.e., resolution effects, on statistics
of the mixture fractionξL(x, t) and velocityuL(x, t) fields in
LES of Sandia flame D. Mean and root mean square (RMS)
values are chosen to be representative statistics since corre-

sponding experimental data are readily available for com-
parison [17, 18]. We focus mainly on the mixture frac-
tion because of its importance in non-premixed combus-
tion modeling. Many flamelet-based approaches involve
the mixture fraction which is used to parametrize chemi-
cal composition, molecular properties and enthalpy. And
therefore, it is a minimal requirement to accurately predict
an evolution of the mixture fraction.

Specific Objectives
In LES of variable-density turbulent flows with

parametrized chemistry one solves large-scale evolution
equations for the resolved density, and the density weighted
velocity and the mixture fraction fields. With a little abuse
of notation, they are customary denoted as ¯ρ, ũi andξ̃, re-
spectively. Here, the common Favre notation for the den-
sity weighted resolved quantity is used, i.e.,ξ̃ = ρξ/ρ̄. The
combustion model is specified through quadratic relation-
ships between specific volume and temperature which re-
sults in the following resolved equations:

1/ρ̄ = 1̃/ρ = a + bξ̃ + cξ̃2, T̃ = aT + bT ξ̃ + cT ξ̃2 (1)

These relationships are nonlinear and depend on the sub-
grid scale fluctuations of the mixture fraction which are
usually characterized by the subgrid scale varianceVξ =

ξ̃2 − ξ̃2. Instead of solving a transport equation forVξ di-

rectly, in this work we carry an equation for̃ξ2 explicitly.
This proves to be more advantageous since the latter equa-
tion does not contain extra production terms [8]. Thus, the
considered LES system of the governing equations is given
by:

∂ρ̄

∂t
+
∂ρ̄ũ j

∂x j
= 0, (2)

∂ρ̄̃ui

∂t
+
∂ρ̄̃uĩu j

∂x j
= −
∂ p̄
∂xi
+ 2
∂

∂x j

(
(µ̄ + µT )(S̃ i j− (3)

−
1
3

S̃ kkδi j)
)
,

∂ρ̄ξ̃

∂t
+
∂ρ̄̃u jξ̃

∂x j
=
∂

∂x j

(
ρ̄(D̃ + DT )

∂ξ̃

∂x j

)
, (4)

∂ρ̄ξ̃2

∂t
+
∂ρ̄ũ jξ̃2

∂x j
=
∂

∂x j

(
ρ̄(D̃ + DT )

∂ξ̃2

∂x j

)
− 2ρ̄χ̃ξ, (5)

ρ̄ = ρ̄(ξ̃, ξ̃2), T̃ = T̃ (ξ̃, ξ̃2), µ̄ = µ̄(T̃ ), D̃ = D̃(T̃ ), (6)

with S̃ i j and χ̃ξ are being the resolved strain rate and
scalar dissipation rate, respectively. In the LES momen-
tum equation, Eq.(3), the Smagorinsky model is used to
obtain the deviatoric part of the unclosed SGS stressτi j =

ρ̄ũiũ j − ρ̄ũiu j:

τi j −
δi j

3
τkk = 2µT

(
S̃ i j −

δi j

3
S̃ kk

)
, (7)
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Figure 1: Specific volume vs. mixture fraction: (a) quadratic (S) and piece-wise quadratic (L, R) models compared to the flamelet solution from
CHEMKIN; (b) quadratic and piece-wise quadratic models fordifferent values of the subgrid varianceVξ = αξ̃(1− ξ̃) with α = 0, 0.2, 0.6 (in descending
order).

with the eddy viscosity beingµT = ρCS∆
2
√

2S̃ i jS̃ i j, where
the Smagorinsky constantCS is computed according to
Germano dynamic procedure. In both scalar equations,
Eqs. (4) and (5), the unclosed subgrid scalar flux is mod-
eled by a standard gradient diffusion hypothesis with the
same subgrid diffusivity ρ̄DT for both scalar fields, for ex-
ample for the mixture fraction one has:

ρ̄ũiξ̃ − ρ̄ũiξ = ρ̄DT
∂ξ̃

∂xi
. (8)

The subgrid diffusivity is specified based on the eddy vis-
cosity and the subgrid Schmidt number as ¯ρDT = µT /S cT

with a commonly used value ofS cT = 0.4 [11]. Finally,
the scalar dissipation rate in Eq. (5) is represented as:

ρ̄χ̃ξ = ρD|∇ξ|2 = ρ̄
(D + DT )
∆2

(ξ̃2 − ξ̃2). (9)

A combustion model and transport properties given by
Eqs. (1) and (6) are obtained from a steady laminar flamelet
solution with the detailed GRI-Mech 3.0 chemical mecha-
nism. A mildly-strained flamelet solution with a strain rate
of a = 130 s−1 is computed in a 1D counter-flow config-
uration by the OPPDIF module of CHEMKIN 4.1. Un-
known density and temperature coefficients are found by
fitting a single parabola to the flamelet solution as shown,
for the case of density, in Fig. 1(a). It exhibits an adequate
approximation for lean mixtures while slightly underpre-
dicting the density for rich mixtures. With the purpose of
improving the flamelet approximation we also consider a
piecewise quadratic relationship given by:

ρ−1(ξ) =

{
aL + bLξ + cLξ

2 if ξ < ξmax

aR + bRξ + cRξ
2 if ξ ≥ ξmax.

(10)

In this case the flamelet solution is approximated by the left
(L) and the right (R) pieces of parabolas smoothly merging
at the maximum pointξmax as shown in Fig. 1(a). These ap-
proximations produce a set of nine coefficientsa, b, c and
aL,R, bL,R, cL,R, respectively, for both density and tempera-
ture.

The direct application of the piecewise quadratic ap-
proximation to calculate an LES density field, i.e., when
subgrid fluctuations are present and the subgrid variance
is non-zero, would result in a discontinuity at the maxi-
mum point due to differences in the coefficients describ-
ing the left and the right branches of a quadratic func-
tion. Therefore, to guarantee continuity and smoothness of
the resolved density and temperature fields for the whole
range of the mixture fraction variance, we assume that the
resolved LES fields in the piecewise quadratic represen-
tation evolve proportionally to corresponding changes in
the approximation described by a single parabola. This
translates to the following definition of the resolved den-
sity ρ̄−1(̃ξ, ξ̃2) = ṽ(̃ξ, ξ̃2) (and similarly for temperature):

ṽ(̃ξ, ξ̃2) =
(
aL,R + bL,Rξ̃ + cL,Rξ̃ξ̃

) a + bξ̃ + cξ̃2

a + bξ̃ + cξ̃ξ̃
. (11)

This equation easily follows by consideringṽ(̃ξ, 0) = aL,R+

bL,Rξ̃ + cL,Rξ̃ξ̃, and the fractional change given by:

ṽ(̃ξ, ξ̃2)

ṽ(̃ξ, 0)
=

a + bξ̃ + cξ̃2

a + bξ̃ + cξ̃ξ̃
, (12)

so that̃v(̃ξ, 0) is based on the piece-wise quadratic represen-
tation, whereas the fractional change on the right hand side
due toVξ is based on the quadratic representation. Equa-
tion (11) is depicted in Fig. 1(b) for several different values
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Figure 2: Molecular viscosity (a) and diffusivity (b) approximations of CHEMKIN data.

Figure 3: Computational domain and geometrical configuration of Sandia flame D
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of the variance and shows continuity while retaining asym-
metry with respect to lean and rich parts of the mixture.

The functional dependence of the mixture molecular vis-
cosity and diffusivity on temperature are shown in Fig. 2(a,
b). They are computed from CHEMKIN and its thermal
and transport databases, and then cast in a power-law form
given by:

µ(T ) = 1.75× 10−5
( T
T0

)0.69 kg
m · s
, (13)

ρD(T ) = 2.48× 10−5
( T
T0

)0.72 kg
m · s
, (14)

with T0 = 298 K. Note that the molecular properties ex-
tracted from the flame calculation are double-valued func-
tions ofT – with one value on the lean side and one on the
rich side of the peak temperature. However, these prop-
erties are adequately approximated by the single-valued
power laws, Eqs. (13) and (14).

We apply LES Eqs. (2-6) to simulate Sandia flame D
that is shown schematically in Fig. 3, and which has been
studied experimentally, as fully detailed in [17]. The fuel
jet consists of 25% methane/75% air mixture and emanates
from a nozzle with diameterD = 7.2 mm at a bulk velocity
of 49.6 m/s, which defines a characteristic Reynolds num-
ber ofRe = 22,400. The nozzle is surrounded by a coaxial
pilot nozzle with diameter of 2.62D. The pilot flow is a lean
burnt mixture of C2H2, air, CO2, H2 and N2 corresponding
to a mixture fraction value ofξ = 0.271, with a bulk veloc-
ity of 11.4 m/s. The coaxial burner is further surrounded by
co-flowing air with a bulk velocity of 0.9 m/s.

In this work the modeled flow configuration is studied in
a cylindrical computational domain of 120.3D × 20D × 2π
that is represented in cylindrical coordinates (x, r, θ) as de-
picted in Fig. 3. In the simulations the jet and pilot noz-
zles have a small axial extension of 0.3D upstream of the
nozzle exit plane, which is taken as the origin of the axial
coordinate,x. The dimensions of the computational do-
main as well as flow variables are non-dimensionalized by
the characteristic jet parameters (i.e., diameter, bulk veloc-
ity, density). The turbulent jet inflow velocity condition is
generated separately by running a high resolution LES of
the stationary turbulent pipe flow enforcing the experimen-
tal mean and RMS of axial velocity as measured by the
TU Darmstadt group [18]. The turbulent pipe flow simu-
lation has been conducted on a 192× 96 × 96 grid with
periodic boundary conditions in streamwise direction. In-
flow velocity conditions for other inflow zones (pilot and
co-flow regions) as well as inflow conditions for scalar
fields are prescribed based on the corresponding bulk val-
ues. Finally, the convective boundary conditions are em-
ployed for velocity and scalar fields on the outflow bound-
ary including the entrainment boundary of the computa-
tional domain. A structured Stanford LES code is em-
ployed to solve the variable-density LES equations, Eqs.

(2-6), written in cylindrical coordinates [23]. The numeri-
cal method is second-order accurate in space and time and
adopts an energy-conserving discretization scheme for the
momentum equation. Scalar transport equations are dis-
cretized using the QUICK scheme [28] and solved employ-
ing a semi-implicit iterative technique, which has proven
to be effective for typical low-Mach combustion problems
[23, 29]. Domain decomposition is used for the LES code
parallelization.

It is clear from Eqs. (2-6) that the LES solution is a func-
tion of the turbulent resolution scale∆(x). As it is custom-
arily done in practice, we also associate the turbulent res-
olution scale with the local numerical grid resolutionh(x),
thus enforcingh(x)/∆(x) = 1. In this work we employ five
gridsG1, . . . ,G5 with a progressively increasing resolution
from about 0.2 to 10.5 million cells as detailed in Table 1.
All grids are stretched in the axial direction as well as in the
radial direction, with clustering in the jet nozzle and pilot
annulus regions, while remaining uniformly spaced in the
circumferential direction. Grid resolution parameters for
the jet nozzle and the pilot are given in Table 2.

In all simulations, with an exception of the finest grid
G5, a zero state is employed as the initial condition for all
scalar variables except the velocity field, which is taken to
be a uniform and equal to the co-flow velocity in the whole
domain. For the finest grid, the initial fields are interpo-
lated from a statistically stationary solution on the preced-
ing grid G4. Time integration is performed with a vari-
able time step corresponding to a CFL number of 0.3-0.4.
Statistics are accumulated after the simulation has reached
a statistically stationary state which is verified by conver-
gence in the RMS statistics. This corresponds to about 12
flow-through times based on the jet bulk velocity and the
length of the computational domain. After that the simula-
tion is continued for approximately ten flow-through times.
LES statisticsQm(∆) are computed by averaging in time
and the circumferential direction, and thus, are functions
of x andr. The specific objective of the current work is to
study influence of∆(x) on statistics of the resolved mixture
fraction and velocity fields.

Results and Discussion
Before proceeding with the discussion of results, we

point out that a complete procedure for the estimation of
LES statisticsQm should include a component which mod-
els statistics of the unresolved (residual) motions [25]. In
other words,Qm can be decomposed asQm = QW + QR,
where QW is defined solely by the resolved LES fields,
while QR estimates the contribution from the residual
fields. In this work, we mainly focus on statistics of
the resolved fields only, and thus make the approximation
Qm ≈ QW . The modeling of the residual componentQR

will be addressed in future efforts.
Axial profiles of the mean centerline mixture fraction

and streamwise velocity are shown in Fig. 4. The veloc-
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Grid Resolution Cells×106 ∆x
min,max ∆r

min,max
(x, r, θ)

G1 96× 64× 32 0.196 12. × 10−2, 4.78 2.8× 10−2, 1.96
G2 160× 96× 64 0.983 7.3× 10−2, 2.89 1.8× 10−2, 1.33
G3 256× 128× 64 2.097 4.5× 10−2, 1.81 1.4× 10−2, 1.01
G4 256× 192× 96 4.719 4.5× 10−2, 1.81 9.4× 10−3, 0.67
G5 320× 256× 128 10.485 3.6× 10−2, 1.45 7.0× 10−3, 0.51

Table 1: Grid parameters and the minimum/ maximum cell width in the axial and radial directions.

Grid Cells inx Cells inr Cells inr Cells in Cells in
for x < 0 for jet nozzle for pilot jet nozzle wall pilot wall

G1 3 10 15 2 2
G2 5 15 22 3 3
G3 8 20 30 3 4
G4 8 30 45 4 6
G5 9 40 50 5 7

Table 2: Grid resolutions for the jet nozzle and the pilot.
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Figure 4: Axial profiles of the centerline mean mixture fraction (top) and mean streamwise velocity (bottom) for different grid resolutions compared with
experimental data (symbols). Note that profiles forG3, G4, G5 grids are essentially coincident.
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experimental data (symbols).

7



0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

〈̃ξ
〉

r/D

x/D = 2

G1

G2

G3

G4

G5

(a)

0 0.5 1 1.5 2

0.06

0.12

0.18

0.24

0.3

ξ̃ r
m

s

r/D

x/D = 2

G1

G2

G3

G4

G5

(b)

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

〈̃u
〉

r/D

x/D = 2

G1

G2

G3

G4

G5

(c)

0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5
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Figure 6: Radial profiles of mean and RMS of mixture fraction (a, b) and streamwise velocity (c, d) at the axial location ofx/D = 2 compared to the
experimental data (symbols).
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Figure 7: Radial profiles of mean and RMS of mixture fraction (a, b) and streamwise velocity (c, d) at the axial location ofx/D = 3 compared to the
experimental data (symbols).
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Figure 8: Radial profiles of mean and RMS of mixture fraction (a, b) and streamwise velocity (c, d) at the axial location ofx/D = 7.5 compared to the
experimental data (symbols).
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ũ r
m

s

r/D

x/D = 15

G1

G2

G3

G4

G5

(b)

Figure 9: Radial profiles of mean and RMS of mixture fraction (a, b) and streamwise velocity (c, d) at the axial location ofx/D = 15 compared to the
experimental data (symbols).
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Figure 10: Radial profiles of mean and RMS of mixture fraction(a, b) and streamwise velocity (c, d) at the axial location ofx/D = 30 compared to the
experimental data (symbols).
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Figure 11: Radial profiles of mean and RMS of mixture fraction(a, b) and streamwise velocity (c, d) at the axial location ofx/D = 45 compared to the
experimental data (symbols).
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Figure 12: Radial profiles of mean and RMS of mixture fraction(a, b) and streamwise velocity (c, d) at the axial location ofx/D = 60 compared to the
experimental data (symbols).
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Figure 13: Grid dependence of the mean (a) and the RMS (b) of the streamwise velocity and the mixture fraction atr/D = 1.5 andr/D = 1, respectively,
for a case ofx/D = 15.

ities shown in these figures are normalized by the jet bulk
velocity. Both mean fields exhibit convergence to almost
the same asymptotic state starting with theG3 grid, while
slightly overpredicting the mixture fraction around an axial
location of x/D = 20. This delay of mixing is consistent
with the adopted quadratic model for which temperature
values are overpredicted for rich mixtures (with a maxi-
mum overprediction of 20% aroundξ = 0.7 − 0.8). The
coarser gridG2, on the other hand, provides a better esti-
mation of the mean mixture fraction at this location with
some underprediction further downstream, which can be
attributed to an excessive fluctuating contribution from the
dynamically computed eddy viscosity and diffusivity. It is
interesting to note that the coarsest gridG1 gives a quite
reasonable prediction of the mean velocity, measured at TU
Darmstadt [18], where the mean mixture fraction is sub-
stantially below the experimental level measured at Sandia
[17].

Figures 5-12 exhibit radial profiles of the correspond-
ing mean and RMS quantities at different axial locations.
It can be seen that, on theG1 andG2 grids, the resolved
streamwise velocity in the near field (up tox/D = 7.5) is
characterized by excessive fluctuations, especially on the
centerline. This is probably caused by an underresolution
in the radial direction in the explicitly simulated jet nozzle,
as further evident comparing Figs. 5(c)-8(c). The radial
resolution in the jet pipe is 10 and 15 cells forG1 andG2,
and 20, 30, 40 cells, respectively, for gridsG3, G4, G5.
As a result, excessive centerline velocity fluctuations pene-
trates the near field but decay quickly afterx/D = 7.5.

Figures 5-9 show that the mixture fraction and velocity
reach an intermediate asymptotic stage for the resolution
scale finer than that ofG2. This also characterizes both
velocity RMS fields and the mixture fraction RMS fields,

the latter, however, shows a little more complicated be-
havior. As can be seen from Figs. 5(b)-9(b), the mixture
fraction RMS profiles exhibit a visible sensitivity to the
turbulent resolution scale∆ at the locations of their max-
ima (r/D ∼ 0.5 − 1.0), i.e., in a mixing layer between jet
fuel and hot pilot products. A less pronounced sensitivity
is also seen in the mixing layer between pilot product and
co-flow air at the initial stage, but it is weaker and disap-
pears at a location ofx/D = 15. Such a behavior suggests
that the adopted LES model, while performing adequately
in most of the domain, is not able to capture the small-
scale scalar processes in the high-gradient regions. Further
downstream, as the scalar gradient decreases, the mixture
fraction RMS shows less sensitivity to∆ and reaches an
approximate asymptotic stage.

The dependence of LES statistics on the resolution scale
is further highlighted in Figs. 13(a, b). Here, the mean and
RMS values of the mixture fraction and streamwise veloc-
ity are plotted versus the grid spacing measureh. These
profiles correspond to radial locations ofr/D = 1.5 for the
mean, andr/D = 1.0 for the RMS, respectively, and for
an axial location ofx/D = 15 (compare to Fig. 9). Since
all grids are non-uniform, the grid spacing measureh is de-
fined as the inverse of the number of cells in the jet (in the
radial direction). It is seen that the velocity statistics attain
its approximate asymptotic state, while the mixture frac-
tion statistics exhibit a discernible change between the two
finest grids,G4 andG5.

It can be further noted that at the far field locations the
mean streamwise velocity (atx/D = 45 andx/D = 60 )
and mixture fraction (atx/D = 60) start deviating from the
intermediate asymptotic stage in a vicinity of the center-
line as shown in Figs. 11, 12. The reason for this could be
two-fold: first, the far field locations clearly require longer
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runs to accumulate an equivalent statistically representative
ensemble (compared to near-field locations); second, the
increase in cell size due to stretching in the axial direction
may be excessive. Finally, we note that the coarsestG1 grid
provides the best approximation for RMS of the streamwise
velocity at x/D = 45 (Fig. 11(d)) as well as a reasonably
good approximation for the mean of the streamwise veloc-
ity on the centerline (Fig. 4), which does not make this
LES solution satisfactory. Thus, it is important to consider
the dependence of an LES solution on∆(x), and to have a
procedure to specify it optimally.

Conclusions
LES of the piloted non-premixed Sandia flame D have

been performed on a series of grids with progressively in-
creasing resolution from 0.19 to 10.4 million cells, with the
purpose of studying the sensitivity of LES statistics to the
turbulence resolution scale∆(x).

In the present effort, a simple combustion model has
been adopted to parametrize reacting density and tem-
perature in terms of the mixture fraction and its square
(or subgrid variance). As a result, two transport equa-
tions for these scalars need to be integrated. Coefficients
for quadratic analytic approximations of specific volume
and temperature have been obtained based on a flamelet
CHEMKIN simulation with a detailed chemistry mecha-
nism. These approximations are found to be quite accurate
for lean mixtures while slightly underpredicting the react-
ing density for rich ones. In addition, the smoothness of
the quadratic model eliminates the effect of interpolation
uncertainties on an LES solution and its statistical depen-
dence on the turbulence resolution scale∆(x).

Mean and RMS values of the mixture fraction and
streamwise velocity have been chosen as representative
LES statistics of interest. Generally, a simply combustion
model is found to be capable to reproduce essential features
of Sandia flame D, especially on fine grids. The hypothe-
sis of the intermediate asymptotic behavior of LES statis-
tics with respect to∆(x) has been tested and found to hold
true throughout the most of the flow domain. However, the
RMS of the mixture fraction is found to be non-convergent
to an asymptotic state in high scalar gradient regions.
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